Search results for "Papulacandin B"

showing 5 items of 5 documents

Glycoprotein molecules in the walls of Schizosaccharomyces pombe wild-type cells and a morphologically altered mutant resistant to papulacandin B

1990

SUMMARY: Schizosaccharomyces pombe cell walls contain two major glycoprotein species, I and II, with molecular masses of 2 x 106 and 5 x 105 Da respectively, as determined by gel filtration chromatography and PAGE. The ratio of sugar to protein is higher in species I than in species II. Much of the sugar in both glycoproteins (about 85% in wild-type cells) is O-linked to the peptide moiety. The morphological sph1 mutant is resistant to papulacandin B, and its cell wall contains less glycoprotein II (but not less glycoprotein I) than the parental wild-type strain, although glycoprotein II is still synthesized and released into the growth medium. Papulacandin B largely reverses the morphologi…

Antifungal AgentsHydrolasesMutantCarbohydratesDrug ResistancePapulacandin BBiologyCell morphologyMicrobiologyCell wallchemistry.chemical_compoundCell WallAcetylglucosaminidaseSchizosaccharomycesGlycoproteinsGel electrophoresischemistry.chemical_classificationWild typebiology.organism_classificationAnti-Bacterial AgentsCulture MediaMolecular WeightAminoglycosidesMannosyl-Glycoprotein Endo-beta-N-AcetylglucosaminidaseSolubilityBiochemistrychemistryMutationSchizosaccharomyces pombeChromatography GelGlycoproteinJournal of General Microbiology
researchProduct

Isolation and characterization of Saccharomyces cerevisiae mutants resistant to aculeacin A

1991

Aculeacin A is a lipopeptide that inhibits beta-glucan synthesis in yeasts. A number of Saccharomyces cerevisiae mutants resistant to this antibiotic were isolated, and four loci (ACR1, ACR2, ACR3, and ACR4) whose products are involved in the sensitivity to aculeacin A of yeast cells were defined. Mutants containing mutations in the four loci were also resistant to echinocandin B, another member of this lipopeptide family of antibiotics. In contrast, acr1, acr3, and acr4 mutants were resistant to papulacandin B (an antibiotic containing a disaccharide linked to two fatty acid chains that also inhibits beta-glucan synthesis), but acr2 mutants were susceptible to this antibiotic. This result …

Antifungal AgentsLlevat de cervesaGenotypeMutantSaccharomyces cerevisiaePapulacandin BSaccharomyces cerevisiaemedicine.disease_causePeptides CyclicMicrobiologyFungal ProteinsEchinocandinschemistry.chemical_compoundCell WallEchinocandin BmedicinePharmacology (medical)PharmacologyFungal proteinMutationbiologyMutagenicity TestsMembrane ProteinsLipopeptideAminoglicòsidbiology.organism_classificationYeastAnti-Bacterial AgentsAminoglucòsidsAminoglycosidesInfectious DiseaseschemistryBiochemistryGlucosyltransferasesMutationSchizosaccharomyces pombe ProteinsPeptidesResearch Article
researchProduct

Formation of a new cell wall by protoplasts of Candida albicans: effect of papulacandin B, tunicamycin and Nikkomycin.

1987

SUMMARY: Incorporation of polysaccharides into the walls of regenerating protoplasts of Candida albicans was followed in the presence of papulacandin B, tunicamycin and nikkomycin. With the first drug, chitin was incorporated normally whereas incorporation of glucans and mannoproteins was significantly decreased. Tunicamycin decreased incorporation of all wall polymers when added at the beginning of the regeneration process but blocked only mannan and alkali-insoluble glucan incorporation when added after 5 h. Nikkomycin inhibited chitin synthesis, and the walls formed by the protoplasts were enriched in alkali-soluble glucan. Pulse-chase experiments suggested that a precursor-product relat…

Antifungal AgentsPapulacandin Bmacromolecular substancesBiologyPolysaccharideMicrobiologyCell wallchemistry.chemical_compoundAgglutininChitinCell WallCandida albicansGlucanMannanchemistry.chemical_classificationProtoplastsTunicamycinfungiPolysaccharides BacterialTunicamycinAnti-Bacterial Agentscarbohydrates (lipids)Microscopy ElectronAminoglycosideschemistryBiochemistryJournal of general microbiology
researchProduct

A kinetic study on the regeneration ofCandida albicansprotoplasts in the presence of cell wall synthesis inhibitors

1993

Aculeacin A and papulacandin B block cell wall regeneration in Candida albicans protoplasts at an intermediate step in which the protoplasts have not yet synthesized the rigid structure of the cell wall and are therefore still osmotically sensitive. In the presence of the antibiotics, total synthesis of glucan is not significantly lowered with respect to control cells, although most of it appears either in the culture medium or in the regenerating wall as alkali-soluble glucan. Thus, it is proposed that echinocandins (such as aculeacin A) and papulacandins may not inhibit glucan synthesis per se but instead inhibit its incorporation into the supramolecular organization of the cell wall.

Antifungal AgentsTime FactorsEchinocandinPapulacandin BBiologyPeptides CyclicMicrobiologyCell wallchemistry.chemical_compoundCell WallCandida albicansGeneticsmedicineCandida albicansMolecular BiologyGlucanchemistry.chemical_classificationProtoplastsProtoplastbiology.organism_classificationYeastAnti-Bacterial AgentsKineticsAminoglycosideschemistryBiochemistryEchinocandinsmedicine.drugFEMS Microbiology Letters
researchProduct

Characterization of aSchizosaccharomyces pombemorphological mutant altered in the galactomannan content

1991

In a search for Schizosaccharomyces pombe mutants resistant to the antifungal agent papulacandin B, a morphological mutant was isolated. The mutant is round shaped in contrast to the rod shaped parental strain. This morphological defect segregated as a recessive Mendelian character and was not observed in other papulacandin B resistant mutants belonging to the same complementation group. The mutation mapped in the right arm of S. pombe chromosome III very close to pap1 marker. Mutant cell walls were more susceptible to alkali extraction and Novozyme degradation than those from the wild-type. A specific reduction in the cell wall galactomannan fraction was the only significant difference det…

biologyMutantWild typeMutagenesis (molecular biology technique)Papulacandin Bbiology.organism_classificationMicrobiologyMolecular biologyMicrobiologyComplementationchemistry.chemical_compoundchemistrySchizosaccharomyces pombeGeneticsMolecular BiologySchizosaccharomycesMannanFEMS Microbiology Letters
researchProduct